Изучение спектра атома водорода, натрия. Спектральные серии в спектре водорода Спектральные серии в спектре водорода

Федеральное Агентство по образованию

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

Кафедра физики

Лабораторная работа по курсу "Общая физика"

ИЗУЧЕНИЕ СПЕКТРА АТОМА ВОДОРОДА

г.Томск 2012

1. ЦЕЛЬ РАБОТЫ

Целью работы является изучение спектра излучения атомов водорода и экспериментальное определение постоянной Ридберга.

2. ОПИСАНИЕ УСТАНОВКИ И МЕТОДИКИ ЭКСПЕРИМЕНТА

Для изучения спектра атома водорода используется спектроскоп на основе призменного монохроматора УМ-2. Схема экспериментальной установки приведена на рис.2.1.

1 – источник света, 2 – входная щель спектроскопа, 3 – входной объектив, 4 – сложная спектральная призма, 5 – микрометрический винт с отсчетным барабаном, 6 – входной объектив, 7 – указатель, 8 - окуляр

Рис.2.1 Схема экспериментальной установки

Свет от источника 1 через входную щель 2 и объектив 3 параллельным пучком падает на спектральную призму с высокой дисперсией 4. Призмой свет разлагается в спектр и через объектив 6 направляется в окуляр 8. При повороте призмы в центре поля зрения появляются различные участки спектра. Призму поворачивают при помощи барабана 5, на которой нанесена шкала в градусах. Вращением барабана спектральную линию подводят к стрелке указателя 7, расположенного в окуляре, и фиксируют отсчет по шкале барабана.

Источником света в данной работе являются газоразрядная водородная трубка и ртутная лампа высокого давления ДРШ-250-3.

3. ОСНОВНЫЕ РАСЧЕТНЫЕ ФОРМУЛЫ

Постоянная Ридберга (угловой коэффициент), расчёт по графику:

, где (3.1)

λ – длина волны спектральных линий;

n – главное квантовое число.

Вспомогательные формулы для расчёта абсолютной погрешности постоянной Ридберга:

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

Угловой коэффициент прямой k= n*S 3 -S 1 S 2 /D (3.9)

Абсолютная погрешность постоянной Ридберга, как абсолютная погрешность углового коэффициента прямой k:

, где (3.10)

n – количество точек.

4. РЕЗУЛЬТАТЫ РАБОТЫ И ИХ АНАЛИЗ.

Таблица 4.1 – Данные градуировки спектроскопа по спектру ртути

Построим градуировочный график φ(λ).

Значения длин волн λ спектральных линий водорода определяются по градуировочному графику: на оси Y откладываются значения φ, а соответствующие им значения на оси X подбираются так, чтобы точка совпала с линией. Используя график, определяем значения длин волн линий спектра водорода. Данные заносим в таблицу 4.2.

Таблица 4.2 – Экспериментальные данные спектра атома водорода

Проверим справедливость формулы Бальмера. Для этого нужно построить график зависимости 1/λ(1/n 2). Рассчитываем необходимые данные, заносим в таблицу 4.3.

Таблица 4.3 – Данные для построения зависимости 1/λ(1/n 2)

1/, мкм  1

Построим график линейной зависимости 1/λ(1/n 2)

Из графика определяем постоянную Ридберга, как угловой коэффициент линейной зависимости 1/λ(1/n 2) по формуле (3.1).

R = (2,445*10 -6 – 1,517*10 -6)/(0,111– 0,028) = 1,108*10 7 (м -1)

Оцениваем абсолютную погрешность R по формулам 3.2 – 3.10.

k= n*S 3 -S 1 S 2 /D=4*0.457-0.241*8.323/0.1623=1,108E+07 м  1

Ошибка определения постоянной Ридберга составила0,98%.

Используя полученные из опыта значения длин волн построим фрагмент энергетического спектра атома водорода.

Рис. 4.3 Фрагмент энергетического спектра атома водорода

Переходы, наблюдаемые в опыте: 6s → 2p, 5s → 2p, 4s → 2p, 3s → 2p.

В ходе лабораторной работы был изучен спектр излучения атомов водорода. Был построен график линейной зависимости 1/λ(1/n 2), по которому удалось определить постоянную Ридберга (R). Погрешность экспериментального определения R составила 1,057E+05 м -1 . Ошибка определения постоянной Ридберга составила 0,98%.

6. ОТВЕТЫ НА КОНТРОЛЬНЫЕ ВОПРОСЫ

КОНТРОЛЬНЫЕ ВОПРОСЫ ПО ЛАБОРАТОРНОЙ РАБОТЕ №7 «ИЗУЧЕНИЕ спектра атома водорода»

    Объяснить принцип действия призменного спектроскопа.

Принцип действия призменного спектроскопа основан на явлении дисперсии света.

    В чем заключается градуировка спектроскопа?

Угол отклонения призмой лучей монохроматического света не пропорционален ни длине волны, ни его частоте. Поэтому дисперсионные спектральные приборы необходимо предварительно градуировать с помощью эталонных источников света. В данной лабораторной работе эталонным источником света являлась ртутная лампа.

Градуировка заключалась в следующем:

Установить перед входной щелью спектроскопа на расстоянии 30-40 см ртутную лампу. Включить блок питания ртутной лампы тумблерами «СЕТЬ» и «ЛАМПА ДРШ». Зажечь ртутную лампу, нажимая несколько раз на кнопку «ПУСК», и дать разогреться лампе в течение 3-5 минут. Изменяя ширину входной щели и перемещая окуляр, добиться, чтобы спектральные линии, видимые через окуляр, были тонкие и резкие.

Измерить значения угла поворота барабана для различных линий спектра ртути, совмещая последовательно линии со стрелкой указателя в окуляре. Подводить линии к указателю следует только с одной стороны, чтобы уменьшить погрешность за счет люфта барабана.

    Как задают состояние электрона в атоме водорода в квантовой механике?

Соответствующие энергиям E n собственные функции

задают стационарные состояния электрона в атоме водорода и зависят от квантовых чисел n , l и m .

Орбитальное квантовое число l при определенном n может принимать значения l =0, 1, 2, …, n -1. Магнитное квантовое число при данном l принимает значения
.

    Какой смысл имеет квадрат модуля волновой функции?

В соответствии с интерпретацией волновой функции квадрат модуля волновой функции
дает плотность вероятности нахождения электрона в различных точках пространства.

    Записать стационарное уравнение Шредингера для электрона в атоме водорода.

, где

R nl (r ) – радиальная часть волновой функции;

Y lm (θ ,φ) – угловая часть волновой функции;

n главное квантовое число;

l орбитальное квантовое число;

m – магнитное квантовое число.

    Привести возможные состояния для электрона в атоме водорода с n = 3.

При n = 3 возможные состояния электрона в атоме водорода: s, p, d.

    Что называют энергией ионизации атома водорода?

Состояние 1s атома называют основным. Ему соответствует наименьший энергетический уровень E 1 =-13,6 эВ, также называемый основным. Все другие состояния и энергетические уровни называются возбужденными. Величина |E 1 | является энергией ионизации атома водорода.

    Доказать, что плотность вероятности нахождения электрона на расстоянии равном боровскому радиусу является максимальной.

Вероятность обнаружения электрона в шаровом слое от r до r + dr равна объему этого слоя
, умноженному на
. Плотность вероятности обнаружения электрона на расстоянии r от ядра


достигает максимума при r = r 0 .

Величина r 0 , имеющая размерность длины, совпадает с радиусом первой боровской орбиты. Следовательно, в квантовой механике радиус первой боровской орбиты интерпретируется как расстояние от ядра, на котором вероятность обнаружения электрона максимальна.

    Какому правилу отбора подчиняется орбитальное квантовое число и почему?

Из закона сохранения момента импульса при испускании и поглощении света атомом для орбитального квантового числа l возникает правило отбора
.

    Указать типы переходов для серий Лаймана и Пашена .

Для серии Лаймана: np → 1s (n = 2, 3 ...).

Для серии Пашена: np → 3s, ns → 3p, nd → 3p, np → 3d, nf → 3d (n = 4, 5 ...)

    Найти коротковолновую и длинноволновую границы (λ 1 и λ ) для серий Лаймана, Бальмера, Пашена .

Для серии Лаймана: m = 1, n = 2, 3, … ∞.

, R = 1,097 ∙ 10 7 (м -1)

при n = ∞.
, λ1 = 1/(1,097 ∙ 10 7) ∙ 10 9 = 91,2 (нм)

, λ∞ = 1/(1,097 ∙ 10 7 ∙ 3/4) ∙ 10 9 = 121,5 (нм)

Для серии Бальмера: m = 2, n = 3, 4 … ∞.

, R = 1,097 ∙ 10 7 (м -1)

при n = ∞.
, λ1 = 1/(1,097 ∙ 10 7 ∙ 1/4) ∙ 10 9 = 364,6 (нм)

, λ∞ = 1/(1,097 ∙ 10 7 ∙ 0,1389) ∙ 10 9 = 656,3 (нм)

Для серии Пашена: m = 3, n = 4, 5 … ∞.

, R = 1,097 ∙ 10 7 (м -1)

при n = ∞.
, λ1 = 1/(1,097 ∙ 10 7 ∙ 1/9) ∙ 10 9 = 820,4 (нм)

, λ∞ = 1/(1,097 ∙ 10 7 ∙ 0,04861) ∙ 10 9 = 1875,3 (нм)

7. ПРИЛОЖЕНИЕ

К работе прилагается регистрационный файл (*.REG).

Атомный спектр испускания водорода представляет собой совокупность лини среди которых можно различить три группы линий, или серии (рис. 1.13).

Рис. 1.13. Атомный спектр испускания водорода.

Серия линий в ультрафиолетовой области спектра называется серией Лаймана. Ее линии подчиняются уравнению

Бор связал значения чисел и в этих уравнениях с «квантовыми числами» (порядко-. выми номерами) энергетических уровней электрона в атоме водорода (рис. 1.14). Когда этот электрон находится в своем основном состоянии, его квантовое число и = 1. Каждая линия серии Лаймана соответствует возвращению возбужденного электрона с одного из высших энергетических уровней в основное состояние. Серия Бальмера соответствует возвращению электронов с различных высокорасположенных энергетических уровней в первое возбужденное состояние (на уровень с квантовым числом и = 2). Серия Пашена соответствует возвращению электронов на уровень с квантовым числом и = 3 (во второе возбужденное состояние).

Обратим внимание на то, что линии каждой серии по мере уменьшения длины волны постепенно приближаются к некоторому пределу (см. рис. 1.13 и 1.14). Длина волны такого предела сходимости для каждой серии определяется соответствующей пунктирной линией на рисунках. По мере увеличения квантового числа энергетические уровни электрона в атоме водорода все больше сгущаются, приближаясь к некоторому пределу. Пределы сходимости спектральных серий соответствуют переходам электронов, находящихся на этих самых высоких энергетических уровнях.


Но что произойдет, если электрон получит еще большую энергию? В этом случае электрон сможет отделиться от атома. В результате атом станет ионизованным, превратится в положительно заряженный ион. Энергия, необходимая для такого возбуждения электрона, чтобы он смог отделиться от атома, называется энергией ионизации. Значения энергий ионизации атомов позволяют получить важные сведения об их электронном строении.

Введение

Исследование линейчатого cпектpа вещества позволяет определить, из каких химических элементов оно состоит и в каком количестве содержится каждый элемент в данном веществе.

Количественное содержание элемента в исследуемом образце определяется путем сравнения интенсивности отдельных линий cпектpа этого элемента с интенсивностью линий другого химического элемента, количественное содержание которого в образце известно.

Метод определения качественного и количественного состава вещества по его cпектpу называется cпектpальным aнaлизом. Cпектpальный aнaлиз широко применяется при поисках полезных ископаемых для определения химического состава образцов руды. В промышленности cпектpальный aнaлиз позволяет контролировать составы сплавов и примесей, вводимых в металлы для получения материалов с задаными свойствами.

Достоинствами cпектpального aнaлиза являются высокая чувствительность и быстрота получения результатов. С помощью cпектpального aнaлиза можно обнаружить в пробе массой 6*10 -7 г присутствие золота при его массе всего 10 -8 г. Определение марки стали методом cпектpального aнaлиза может быть выполнено за несколько десятков секунд.

Cпектpальный aнaлиз позволяет определить химический состав небесных тел, удаленных от Земли на расстояния в миллиарды световых лет. Химический состав атмосфер планет и звезд, холодного газа в межзвездном пространстве определяется по cпектpам поглощения.

Изучая cпектpы, ученые смогли определить не только химический состав небесных тел, но и их температуру. По смещению cпектpальных линий можно определять скорость движения небесного тела.

История открытия спектра и спектрального анализа

В 1666 году Исаак Ньютон, обратив внимание на радужную окраску изображений звезд в телескопе, поставил опыт, в результате которого открыл дисперсию света и создал новый прибор – спектроскоп. Ньютон направил пучок света на призму, а потом для получения более насыщенной полосы заменил круглое отверстие на щелевое. Дисперсия – зависимость показателя преломления вещества от длины волны света. Благодаря дисперсии белый свет разлагается в спектр при прохождении через стеклянную призму. Поэтому такой спектр называют дисперсионным.



Излучение абсолютно черного тела, проходя через молекулярное облако, приобретает линии поглощения с своем спектре. У облака также можно наблюдать эмисионный спектр. Разложение электромагнитного излучения по длинам волн с целью их изучения называется спектроскопией. Анализ спектров – основной метод изучения астрономических объектов, применяемый в астрофизике.

Наблюдаемые спектры делятся на три класса:

линейчатый спектр излучения. Нагретый разреженный газ испускает яркие эмиссионные линии;

непрерывный спектр. Такой спектр дают твердые тела, жидкости или плотный непрозрачный газ в нагретом состоянии. Длина волны, на которую приходится максимум излучения, зависит от температуры;

линейчатый спектр поглощения. На фоне непрерывного спектра заметны темные линии поглощения. Линии поглощения образуются, когда излучение от более горячего тела, имеющего непрерывный спектр, проходит через холодную разреженную среду.

Изучение спектров дает информацию о температуре, скорости, давлении, химическом составе и о других важнейших свойствах астрономических объектов. История спектрального анализа началась в 1802 году, когда англичанин Волланстон, наблюдая спектр Солнца, впервые увидел темные линии поглощения. Он не смог объяснить их и не придал своему открытию особого значения.

В 1814 году немецкий физик Фраунгофер вновь обнаружил в солнечном спектре темные линии поглощения и верно смог объяснить их появление. С тех пор их называют линиями Фраунгофера. В 1868 году в спектре Солнца были обнаружены линии неизвестного элемента, названного гелием (греч. helios «Солнце»). Через 27 лет небольшое количество этого газа обнаружилось и в земной атмосфере. Сегодня известно, что гелий – второй по распространенности элемент во Вселенной. В 1918–1924 годах вышел в свет каталог Генри Дрепера, содержащий классификацию спектров 225 330 звезд. Этот каталог стал основой для Гарвардской классификации звезд. В спектрах большинства астрономических объектов наблюдаются линии водорода, возникающие при переходе на первый энергетический уровень. Это серия Лаймана, наблюдаемая в ультрафиолете; отдельные линии серии имеют обозначения Lα (λ = 121,6 нм), Lβ (λ = 102,6 нм), Lγ (λ = 97,2 нм) и так далее. В видимой области спектра наблюдаются линии водорода серии Бальмера. Это линии Hα (λ = 656,3 нм) красного, Hβ (λ = 486,1 нм) голубого, Hγ (λ = 434,0 нм) синего и Hδ (λ = 410,2 нм) фиолетового цвета. Линии водорода наблюдаются и в инфракрасной части спектра – серии Пашена, Брэккета и другие, более далекие.

Спектральные серии в спектре водорода

Почти все звезды имеют линии поглощения в спектре. Наиболее интенсивная линия гелия расположена в желтой части спектра: D3 (λ = 587,6 нм). В спектрах звезд типа Солнца наблюдаются также линии натрия: D1 (λ = 589,6 нм) и D2 (λ = 589,0 нм), линии ионизованного кальция: Н (λ = 396,8 нм) и К (λ = 393,4 нм). Фотосферы звезд дают непрерывный спектр, пересеченный отдельными темными линиями, которые возникают при прохождении излучения через более холодные слои атмосферы звезды. По спектру поглощения (точнее, по наличию определенных линий в спектре) можно судить о химическом составе атмосферы звезды. Яркие линии в спектре показывают, что звезда окружена расширяющейся оболочкой из горячего газа. У красных звезд с низкой температурой в спектре видны широкие полосы молекул окиси титана, оксидов. Ионизированный межзвездный газ, нагретый до высоких температур, дает спектры с максимумом излучения в ультрафиолетовой области. Необычные спектры дают белые карлики. У них линии поглощения во много раз шире, чем у обычных звезд и имеются линии водорода, которые отсутствуют при таких температурах у обычных звезд. Это объясняется высоким давлением в атмосферах белых карликов.

Виды спектров

Cпектpальный состав излучения различных веществ весьма разнообразен. Но, несмотря на это, все cпектpы, как показывает опыт, можно разделить на три сильно отличающихся друг от друга типа.

Непрерывные cпектpы.

Солнечный cпектp или cпектp дугового фонаря является непрерывным. Это означает, что в cпектpе представлены волны всех длин. В cпектpе нет разрывов, и на экране cпектpографа можно видеть сплошную разноцветную полосу.

Распределение энергии по частотам, т. е. Cпектpальная плотность интенсивности излучения, для различных тел различно. Например, тело с очень черной поверхностью излучает электромагнитные волны всех частот, но кривая зависимости cпектpальной плотности интенсивности излучения от частоты имеет максимум мри определенной частоте. Энергия излучения, приходящаяся на очень малые и очень большие частоты, ничтожно мала. При повышении температуры максимум cпектpальной плотности излучения смещается в сторону коротких волн.

Непрерывные (или сплошные) cпектpы, как показывает опыт, дают тела, находящиеся в твердом или жидком состоянии, а также сильно сжатые газы. Для получения непрерывного cпектpа нужно нагреть тело до высокой температуры.

Характер непрерывного cпектpа и сам факт его существования определяются не только свойствами отдельных излучающих атомов, но и в сильной степени зависят от взаимодействия атомов друг с другом.

Непрерывный cпектp дает также высокотемпературная плазма. Электромагнитные волны излучаются плазмой в основном при столкновении электронов с ионами.

Линейчатые cпектpы.

Внесем в бледное пламя газовой горелки кусочек асбеста, смоченного раствором обыкновенной поваренной соли. При наблюдении пламени в cпектpоскоп на фоне едва различимого непрерывного cпектpа пламени вспыхнет ярко желтая линия. Эту желтую линию дают пары натрия, которые образуются при расщеплении молекул поваренной соли в пламени. На cпектpоскопе также можно увидеть частокол цветных линий различной яркости, разделенных широкими темными полосами. Такие cпектpы называются линейчатыми. Наличие линейчатого cпектpа означает, что вещество излучает свет только вполне определенных длин волн (точнее, в определенных очень узких cпектpальных интервалах). Каждая из линий имеет конечную ширину.

Линейчатые cпектpы дают все вещества в газообразном атомарном (но не молекулярном) состоянии. В этом случае свет излучают атомы, которые практически не взаимодействуют друг с другом. Это самый фундаментальный, основной тип cпектpов.

Изолированные атомы данного химического элемента излучают строго определенные длины волн.

Обычно для наблюдения линейчатых cпектpов используют свечение паров вещества в пламени или свечение газового разряда в трубке, наполненной исследуемым газом.

При увеличении плотности атомарного газа отдельные cпектpальные линии расширяются и, наконец при очень большой плотности газа, когда взаимодействие атомов становится существенным, эти линии перекрывают друг друга, образуя непрерывный cпектp.

Полосатые cпектpы.

Полосатый cпектp состоит из отдельных полос, разделенных темными промежутками. С помощью очень хорошего cпектpального аппарата можно обнаружить, что каждая полоса представляет собой совокупность большого числа очень тесно расположенных линий. В отличие от линейчатых cпектpов полосатые cпектpы создаются не атомами, а молекулами, не связанными или слабо связанными друг с другом.

Для наблюдения молекулярных cпектpов так же, как и для наблюдения линейчатых cпектpов, обычно используют свечение паров в пламени или свечение газового разряда.

Cпектpы поглощения.

Все вещества, атомы которых находятся в возбужденном состоянии, излучают световые волны, энергия которых определенным образом распределена по длинам волн. Поглощение света веществом также зависит от длины волны. Так, красное стекло пропускает волны, соответствующие красному свету, и поглощает все остальные.

Если пропускать белый свет сквозь холодный, неизлучающий газ, то на фоне непрерывного cпектpа источника появляются темные линии. Газ поглощает наиболее интенсивно свет как раз тех длин волн, которые он испускает в сильно нагретом состоянии. Темные линии на фоне непрерывного cпектpа - это линии поглощения, образующие в совокупности cпектp поглощения.

Существуют непрерывные, линейчатые и полосатые cпектpы излучения и столько же видов cпектpов поглощения.

Важно знать, из чего состоят окружающие нас тела. Изобретено много способов определения их состава. Но состав звезд и галактик можно узнать только с помощью cпектpального aнaлиза.

Цель работы :

1. Исследовать видимую часть спектра атома водорода .

2. Определить постоянную Ридберга и энергию ионизации атома водорода .

Основные теоретические положения работы .

Законы классической физики описывают непрерывные процессы. Атом, состоящий из положительно заряженного ядра и окружающих его электронов, согласно этим законам, будет находиться в равновесии только при условии, что электроны непрерывно движутся вокруг ядра по некоторым орбитам. Но с точки зрения классической электродинамики движущиеся с ускорением электроны излучают электромагнитные волны, вследствие чего они теряют энергию и постепенно падают на ядро. В этих условиях частота обращения электрона меняется непрерывным образом и спектр излучения атома должен быть сплошным. Когда электрон упадет на ядро, атом перестает существовать.

Несложными вычислениями можно убедиться в том, что промежуток времени, через который электрон упадет на ядро, составляет 10 -11 с. Эксперимент показывает, что атомные спектры состоят из отдельных линий или групп линий. Все это указывает на то, что процессам, в которых участвуют микрообъекты, свойственна прерывность (дискретность), и методы классической физики, вообще говоря, неприменимы к описанию внутриатомных движений.

В 1913 году Н.Бору удалось построить непротиворечивую теорию, которая успешно объясняла строение атома водорода. Бор распространил Постулат М.Планка (1900г.) о существовании устойчивых стационарных состояний осцилляторов (который является необходимой предпосылкой для вывода правильной формулы излучения абсолютно черного тела) на любые атомные системы. В основе теории Бора лежат два постулата:

1. Атом и атомные системы могут длительно пребывать только в определенных (стационарных) состояниях, в которых, несмотря на происходящие в них движения заряженных частиц, они не излучают и не поглощают энергию. В этих состояниях атомные системы обладают энергиями, образующими дискретный ряд: Е 1 , Е 2 , …, Е n . Состояния эти характеризуются своей устойчивостью: всякое изменение энергии в результате поглощения или испускания электромагнитного излучения или в результате соударения может происходить только при полном переходе (скачком) из одного состояния в другое.

2. При переходе из одного состояния в другое атомы испускают (или поглощают) излучение только строго определенной частоты. Излучение, испускаемое (или поглощаемое) при переходе из состояния с энергией Е m в состояние Е n монохроматично, и его частота определяется из условия

Оба постулата противоречат требованиям классической электродинамики. Первый постулат утверждает, что атомы не излучают, хотя образующие его электроны совершают ускоренное движение (обращение по замкнутым орбитам). Согласно второму постулату, испускаемые частоты не имеют ничего общего с частотами периодических движений электронов.


Спектр излучения того или иного вещества - важная его характеристика, которая позволяет установить его состав, некоторые характеристики его строения, свойства атомов и молекул.

Атомы газа испускают линейчатые спектры, состоящие из групп отдельных спектральных линий, называемых спектральными сериями . Наиболее простой спектр имеет атом водорода. Уже в 1885 году Бальмер показал, что длины волн четырех линий, лежащих в видимой части спектра, могут быть очень точно представлены эмпирической формулой

где n = 3, 4, 5, 6,…, В – эмпирическая константа.

Закономерность, выражаемая этой формулой, становится особенно наглядной, если представить ее в том виде, в котором ей обычно пользуются в настоящее время:

Величину иногда обозначают через и называют спектроскопическим волновым числом. Константа носит название постоянной Ридберга. Таким образом, окончательно получим

С увеличением номера n линии интенсивность линии уменьшается. Уменьшается также разность между волновыми числами соседних линий. При n = ∞ получается постоянное значение = . Если схематически представить расположение спектральных линий, определяемых (4) и условно изображать длиной линии их интенсивность, получится картина, представленная на рис.1.

Совокупность спектральных линий, обнаруживающие в своей последовательности и в распределении интенсивности закономерность, показанную на рис.1, называется спектральной серией . Предельная длина волны, около которой сгущаются линии при n → ∞, называется границей серии. Серия, описываемая формулой (4) носит название серии Бальмера.

Наряду с серией Бальмера в спектре атома водорода был обнаружен ряд других серий, представляемых совершенно аналогичными формулами.

В ультрафиолетовой области была найдена серия Лаймана:

В инфракрасной области спектра были обнаружены

Серия Пашена

Серия Брэкета

Серия Пфунда

Серия Хэмфри

Таким образом, все известные серии атомарного водорода можно представить так называемой обобщенной формулой Бальмера:

где m в каждой серии имеет постоянной значение, а n – ряд целых значений, начинающихся с m+1.

Поиски физического смысла формулы (10)привели к созданию квантовой теории атома водорода. Уравнение Шредингера для него записывается в виде:

где Ψ(r) – волновая функция, описывающая состояние электрона в атоме, Е – полная энергия электрона.

Решение этого уравнения – спектр возможных значений полной энергии атома водорода:

Согласно (1) частота перехода между состояниями определяется

С другой стороны, по известной формуле

Комбинируя (12), (13) и (14), получаем:

совпадает с обобщенной формулой Бальмера.

Теоретическое значение постоянной Ридберга (16) все же значительно отличается от экспериментально полученного из спектроскопических измерений. Это связано с тем, что при выводе формулы (16) принимаются два допущения: а) масса ядра атома бесконечно велика по сравнению с массой электрона (отсюда и символ «∞» в обозначении постоянной) и б) ядро неподвижно. В действительности, например, для атома водорода, масса ядра всего лишь в 1836,1 раз больше массы электрона. Учет этого обстоятельства приводит к следующей формуле:

где М – масса ядра атома. В этом приближении постоянная Ридберга зависит от массы ядра, и поэтому ее значение для различных водородоподобных атомов отличаются друг от друга (рис.2).

Рис.2 Рис.3

Для того, чтобы получить всю совокупность сведений об атоме, удобно пользоваться диаграммой уровней энергии (рис.3). Горизонтальные прямые отвечают различным энергетическим состояниям атома водорода. По мере увеличения номера состояния расстояние между соседними уровнями уменьшается и в пределе обращается в нуль. Выше места слияния расположена сплошная область неквантованных положительных энергий. За нулевой уровень энергии принимается энергия уровня с n = ∞. Ниже этого значения энергетические уровни дискретны. Им соответствуют отрицательные значения полной энергии атома. Это обстоятельство указывает на то, что энергия электрона в таких состояниях меньше его энергии в том случае, когда он отделен от атома и покоится на бесконечно большом расстоянии, то есть на то, что электрон находится в связанном состоянии.

Наличие несвязанных электронов делает возможными квантовые переходы между состояниями непрерывного энергетического спектра, а также между такими состояниями и состояниями дискретного спектра энергии. Это проявляется в виде сплошного спектра испускания или поглощения, накладывающегося на линейчатый спектр атома. Поэтому спектр не обрывается на границе серии, а продолжается за нее в сторону более коротких волн, где он становится сплошным. Переходы из состояний непрерывного спектра (тех состояний, в которых атом ионизирован) в состояния дискретного спектра сопровождается рекомбинацией электрона и положительного иона. Возникающее при этом излучение называется рекомбинационным.

Переход атома из нормального состояния на более высокий энергетический уровень дискретного спектра есть возбуждение атома. Переход же атома с одного из уровней дискретного спектра в область сплошного спектра превращает атом в несвязанную систему. Это есть процесс ионизации атома . Энергия, соответствующая волновому числу начала сплошного спектра со стороны длинных волн (волновому числу границы серии) должна быть равной энергии ионизации, то есть энергии, необходимой для отделения электрона от атома и удаления его на бесконечное расстояние. Таким образом, волновое число границы серии Лаймана дает энергию ионизации атома водорода в основном, наиболее устойчивом состоянии.

В данной работе изучаются четыре первые линии серии Бальмера, которые имеют следующие обозначения:

Красная линия (n = 3),

Сине – голубая линия (n = 4),

Голубая линия (n = 5),

Фиолетовая линия (n = 6).

ЛАБОРАТОРНАЯ РАБОТА № 18

ИЗУЧЕНИЕ СПЕКТРА АТОМА ВОДОРОДА

Цель работы: изучение действия видимого, инфракрасного и ультрафиолетового излучения на организм; ознакомление с методикой измерения длин волн спектральных линий с помощью спектроскопа; исследование спектра атома водорода.

Задачи работы : 1)градуировка спектроскопа по известному спектру ртутной лампы; 2) измерение длин волн линий серии Бальмера атома водорода; 3) вычисление постоянной Ридберга и первого боровского радиуса.

Обеспечивающие средства: спектроскоп, ртутная и водородная лампы.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Основы теории излучения

В результате углубления представлений о природе света, выяснилось, что свет обладает двойственной природой, получившей название корпускулярно-волнового дуализма света. С некоторыми объектами свет взаимодействует как электромагнитная волна, с другими - подобно потоку особых частиц (световых квантов или фотонов). То есть свет - это материальный объект, обладающий как волновыми, так и корпускулярными свойствами. В различных физических процессах эти свойства могут проявляться в различной степени. При определенных условиях, то есть в ряде оптических явлений свет проявляет свои волновые свойства (например, при интерференции и дифракции). В этих случаях необходимо рассматривать свет как электромагнитные волны. В других оптических явлениях (фотоэффект, эффект Комптона и т.д.) свет проявляет свои корпускулярные свойства, и тогда его следует представлять как поток фотонов. Иногда, оптический эксперимент можно организовать так, что свет будет проявлять в нем как волновые, так и корпускулярные свойства. Раздел физики, занимающийся изучением природы света, законов его распространения и взаимодействия с веществом, называется оптикой.

Свет - в узком смысле то же, что и видимое излучение , т. е. электромагнитные волны в интервале частот, воспринимаемых человеческим глазом (7,5-10 14 -4,3-10 14 гц, что соответствует длинам волн λ в вакууме от 400 до 760 нм). Внутри данного интервала чувствительность глаза неодинакова, она изменяется в зависимости от воспринимаемой длины волны излучения. Наибольшей чувствительностью глаз обладает в зеленой области, что соответствует длине волны около 550 нм. Свет - в широком смысле – синоним оптического излучения , включающего, кроме видимого, излучение ультрафиолетовой УФ (10 нм < λ < 400 нм) и инфракрасной ИК областей спектра (760 нм < λ < 1 мм). Именно в оптическом диапазоне начинают отчётливо проявляться одновременно и волновые и корпускулярные свойства электромагнитного излучения.

Естественными источниками света являются Солнце, Луна, звёзды, атмосферные электрические разряды и т.д.; искусственными - устройства, превращающие энергию любого вида в энергию видимых (или оптических) излучений. Из искусственных источников света различают тепловые источники, в которых свет возникает при нагревании тел до высокой температуры, и люминесцентные, в которых свет возникает в результате превращения тех или иных видов энергии непосредственно в оптическое излучение, независимо от теплового состояния излучающего тела. Совершенно новый тип источников света представляют собой лазеры (оптические квантовые генераторы), которые дают когерентные световые пучки высоких интенсивностей, исключительной однородности по частоте и острой направленности.

Вопрос об излучении и поглощении света веществом относится не только к оптике, но и к учению о строении самого вещества (атомов и молекул).

В опытах Резерфорда (1911 год) было установлено, что атом любого химического элемента состоит из положительно заряженного ядра, вокруг которого расположены отрицательно заряженные электроны. В целом атом нейтрален. Совокупность электронов составляет электронную оболочку атома. Ядро, в котором сосредоточена почти вся масса атома, занимает ничтожно малую часть всего его объема. Диаметр ядра порядка 10 -12 -10 -13 см. При этом размер самого атома, который определяется размерами его электронной оболочки, около 10-8 см. Опыты Резерфорда наводили на мысль о планетарной модели атома, в которой электроны (планеты) движутся вокруг ядра (Солнца) по замкнутым (например, в первом приближении по круговым) орбитам. Но в этом случае электроны будут двигаться с ускорением, и в соответствии с классической электродинамикой они должны непрерывно излучать электромагнитные (световые) волны. Процесс излучения сопровождается потерей энергии, поэтому в конечном счете электроны должны упасть на ядро, а атом прекратить свое существование. Таким образом, вопросы об устойчивости атомов и закономерностях в атомных спектрах оставались открытыми. (Cпектром излучения или поглощения называется зависимость интенсивности излучения или поглощения от частоты или длины волны света.)

Проанализировав всю совокупность опытных фактов, в 1913 году датский физик Нильс Бор пришел к выводу, что при описании атома, то есть устойчивого образования из ядра и электронов, следует отказаться от многих представлений классической физики. Он сформулировал постулаты, которым должна удовлетворять теория о строении атома.

Первый постулат : атом (электрон в атоме) может находиться только в особых стационарных или квантовых состояниях, каждому из которых соответствует определенное значение энергии (Е 1 , Е 2 ,…, Е n ,….). Таким образом, энергия атома (электрона в атоме) принимает только дискретные значения, или квантуется. В стационарных состояниях атом не излучает.

Второй постулат (правило частот Бора) : при переходе атома (электрона в атоме) из одного стационарного состояния с энергией E n в другое стационарное состояние с энергией E m излучается или поглощается квант света (фотон), энергия которого равна разности энергий стационарных состояний:

Е фотона = hν nm = E n - E m , (1)

где h = 6,62·10 -34 Дж×с – постоянная Планка, ν nm - частота излучения (поглощения). Если E n > E m , то происходит испускание света; если E n < E m - поглощение. Формула (1) представляет собой закон сохранения энергии.

Зная частоту ν nm можно найти длину волны испущенной (поглощенной) электромагнитной волны:

где с = 3·10 8 м/с – скорость света в вакууме.

Энергетические уровни атома и условное изображение процессов испускания и поглощения света (переходы Е 3 → Е 2 и Е 1 → Е 2 , соответственно) приведены на рис.1.

На основе предложенных постулатов Бор создал теорию простейшего атома водорода и объяснил его линейчатый спектр. Выводы в теории Бора атома водорода полностью совпадают с выводами современной квантовой физики, которая строго и адекватно описывает строение и спектры атомных систем.

В своей теории, имеющей на данный момент только историческое значение, Бор рассматривал движение электрона вокруг ядра по круговым орбитам. Им было установлено, что соответствующие стационарным состояниям атома радиусы круговых орбит r n принимают дискретные значения (в системе СГС э):

, (3)

здесь m e – масса электрона; e – его заряд; n – номер орбиты (квантовое число), которое принимает значения 1, 2, 3… и т.д.

Формулу (3) можно записать в следующем виде:

Первый (n = 1) боровский радиус, (5)

Постоянная Ридберга, - постоянная тонкой структуры.

Длины волн спектральных линий, испускаемых при квантовых переходах электрона в атоме водорода, определяются формулой Бальмера:

Эта формула была предложена изучавшим атомные спектры Бальмером задолго до создания квантовой механики, а впоследствии получена теоретически Бором. Здесь n и m –квантовые числа (порядковые номера) верхнего и нижнего энергетических уровней, между которыми происходит квантовый переход. Формула (6) является одной из наиболее точных формул физики. Из нее следует, что все линии спектра испускания (поглощения) атома водорода могут быть объединены в серии. Серией называется совокупность линий, испускаемых при переходах электрона с вышележащих уровней с квантовыми числами n = m+1, m+2, m+3 и т.д. на уровень с квантовым числом m = const.

На рисунке 2 представлены энеpгетические уpовни и спектральные серии атома водоpода. Слева от уровней приведены соответствующие их порядковому номеру квантовые числа. В результате pазличных пеpеходов атома водоpода с более высоких уpовней на нижние образуются серии: Лаймана (m = 1 , n = 2,3,4..); Бальмера (m = 2 , n = 3,4,5..); Пашена (m = 3 , n = 4,5,6..); Брэккета (m = 4 , n = 5,6,7..); Пфунда (m = 5 , n = 6,7,8..) и т.д. Согласно формуле (1) частоты спектральных линий пpопоpциональны длинам стpелок между уровнями энергии рассматриваемых квантовых пеpеходов. Видно, что самые большие частоты (малые длины волн) соответствуют линиям сеpии Лаймана. Сеpия Лаймана целиком лежит в ультpафиолетовой области спектра электромагнитных волн. Следующая сеpия - сеpия Бальмеpа (меньшие частоты или бόльшие длины волн) попадает уже в ближнюю ультрафиолетовую и видимую область спектра. Следующая сеpия - сеpия Пашена (еще меньшие частоты) находится в ближней инфpакpасной области, а линии остальных серий - в далеком инфракрасном диапазоне.

Видимая часть линейчатого спектра атома водорода (серия Бальмера) состоит из ряда линий, наиболее яркими из которых являются следующие три: красная - H a (n = 3), голубая - H b (n = 4), фиолетовая - H g (n = 5).

Измерив длины волн этих линий с учетом формулы (6) можно экспериментально найти значение постоянной Ридберга R :

R = (7)

Полученное значение R позволяет по формуле (5) вычислить первый боровский радиус и оценить линейные размеры атома водорода (l ~ 2·r 1).

Теория Бора при описании поведения атомных систем не отвергала полностью законы классической физики. В ней сохранились представления об орбитальном движении электронов в кулоновском поле ядра (в случае атома водорода - электрон вокруг ядра движется по круговым стационарным орбитам). Поэтому теорию Бора иногда называют полуклассической. Тем не менее, она сыграла огромную роль в создании атомной физики. В период ее развития (1913 - 1925 г.) были сделаны важные открытия, например, в области атомной спектроскопии. Однако, несмотря на удачное объяснение спектральных закономерностей водородоподобных атомов, которое совпадает с выводами из квантовой физики, теория Бора обладает рядом недостатков. В частности, она не может объяснить спектры излучения более сложных атомов и различную интенсивность спектральных линий. Эти трудности могут быть преодолены только квантовой теорией, учитывающей неприменимость классических представлений к микрообъектам. В то же время, постулаты Бора в приведенной выше формулировке (без указания на вращение электрона вокруг ядра по определенным орбитам) не противоречат представлениям современной физики и точно описывают стационарные состояния и квантовые переходы в атомах.

ПРАКТИЧЕСКАЯ ЧАСТЬ

Градуировка спектроскопа

Простейшим оптическим прибором, предназначенным для разложения света на спектральные составляющие и визуального наблюдения спектра, является спектроскоп. Современные спектроскопы, снабженные устройствами для измерения длин волн, называются спектрометрами.

Используемый в настоящей работе спектроскоп (рис.3) состоит из коллиматорной (1) и зрительной (4) труб, укрепленных на подставке (2); стеклянной призмы (3) под крышкой и микрометрического винта (5). Наблюдение спектральных линий ведется через расположенный на конце зрительной трубы окуляр.

Принципиальная схема призменного спектроскопа приведена на рис.4. Освещаемая светом исследуемого источника входная щель О коллиматорной трубы выделяет узкий пучок света. Входная щель находится в фокусе коллиматорной линзы O 1 , которая формирует параллельный пучок лучей, падающих на диспергирующий элемент - призму. Проходя через призму, лучи света дважды преломляются, в результате чего отклоняются от своего первоначального направления. Вследствие зависимости показателя преломления призмы от длины волны падающего излучения (это явление называется дисперсией), свет сложного спектрального состава разлагается призмой на несколько идущих по разным направлениям лучей с различными длинами волн. При этом лучи с меньшей длиной волны (фиолетовые) отклоняются призмой от своего первоначального направления сильнее, чем лучи с большей длиной волны (красные). Линза 0 2 зрительной трубы фокусирует эти пучки света и создает в разных точках фокальной плоскости цветные линии - изображения входной щели. Эти линии образуют линейчатый спектр испускания атомов, входящих в состав изучаемого источника света. Измерив длины волн этих линий и сравнив найденные значения с табличными данными о спектрах различных химических элементов, можно узнать, какому элементу принадлежит исследуемый спектр. Эта методика лежит в основе эмиссионного спектрального анализа.

Рис. 3

Работа со спектроскопом начинается с его градуировки. Градуировкой спектроскопа называют процесс, с помощью которого устанавливается связь между отсчетом по шкале микрометрического винта и длиной волны спектральной линии, расположенной против нити (визира) в зрительной трубе. Для градуировки используется эталонный источник света, у которого имеются линии во всех областях спектра. Длины волн этих линий должны быть известны с высокой точностью. Результаты градуировки представляются в виде графиков, таблиц или в виде новой шкалы.

В настоящей работе в качестве эталонного источника света используется ртутная лампа сверхвысокого давления типа СВД-125 или ДРШ. Изготовленная из специального кварцевого стекла и заполненная парами ртути трубка лампы пропускает свет в очень широком диапазоне (включая видимую и ультрафиолетовую области спектра). Трубка лампы (для защиты глаз от ультрафиолетовых лучей) помещена в светонепроницаемый корпус с небольшим окном для выхода излучения.

Включите ртутную лампу с помощью тумблера, расположенного на задней панели светонепроницаемого корпуса. Лампа должна прогреться в течение 10 минут. Выходное окно включенной ртутной лампы необходимо расположить напротив входной щели коллиматорной трубы спектроскопа. Обычные стеклянные линзы и призма спектроскопа задерживают ультрафиолетовое излучение, поэтому в окуляре зрительной трубы будут видны только отдельные спектральные линии различного цвета и интенсивности, принадлежащие видимому спектру ртути. Наблюдая спектр в окуляр, перемещением ртутной лампы добейтесь максимальной яркости спектральных линий. Вращение микрометрического винта приводит к повороту зрительной трубы в горизонтальной плоскости вокруг вертикальной оси, и расположенная в окуляре нить (визир) будет перемещаться по спектру. Измерения рекомендуется проводить при перемещениях нити от желтой к фиолетовым линиям. Совместите визир со спектральной линией ртути. Перемещая окуляр вдоль зрительной трубы, получите наиболее четкое изображение этой линии. При необходимости дополнительно поверните микрометрический винт и снова совместите визир с линией. (Для получения наиболее точных измерений визир всегда должен приближаться к линии только с одной стороны, в нашем случае - с правой.) Занесите показания шкалы микрометрического винта для соответствующего цвета в таблицу 1. (Один полный оборот винта соответствует 50 малым делениям на барабане. Если у вас получилось 5 полных оборотов и 7 малых делений - всего малых делений будет 257.) Длина волны спектральных линий ртути в таблице приведена в нанометрах (1нм = 10 -9 м). Проведите измерения для других линий и заполните таблицу 1. Выключите ртутную лампу.

Таблица 1

По данным таблицы 1 на миллиметровой бумаге постройте градуировочный график (градуировочную кривую спектроскопа). По оси ординат OY откладываются длины волн спектральных линий ртути, по оси абсцисс OX - соответствующие им показания по шкале микрометрического винта. Градуировочный график должен иметь вид плавной монотонной линии. С его помощью по измеренным значениям положений (делений шкалы микровинта) спектральных линий любого другого излучения можно определить их длины волн.

Изучение спектра атома водорода

В настоящей работе изучаются спектральные линии серии Бальмера атома водорода, так как часть этих линий лежит в видимой области спектра: красная - H a , голубая - H b , фиолетовая - H g . Для экспериментального определения постоянной Ридберга, необходимо измерить длины волн этих спектральных линий.

Включите источник питания водородной лампы. Расположите выходное окно лампы и спектроскоп так, чтобы спектральные линии атома водорода были наиболее яркими. Вращением микрометрического винта совместите визир окуляра с красной линией серии Бальмера. Перемещая окуляр вдоль зрительной трубы, получите наиболее четкое изображение этой спектральной линии. Занесите показания шкалы микрометрического винта в таблицу 2. Проведите измерения для голубой и фиолетовой линий атома водорода. Выключите водородную лампу.

Таблица 2

Впишите в таблицу 2 квантовые числа энергетических уровней, между которыми происходит переход с испусканием соответствующей спектральной линии. Длины волн этих линий определите из градуировочного графика и переведите их в систему СИ (метры).

По формуле (7) найдите величину постоянной Ридберга для каждой длины волны. Вычислите среднее значение постоянной Ридберга и случайную погрешность , связанную с разбросом экспериментальных данных: = 0,529 · 10 -10 м. Рассчитайте относительную погрешность определения первого боровского радиуса .

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

ВНИМАНИЕ! В работе применяется ртутная лампа, являющаяся мощным источником ультрафиолетового излучения. Запрещается смотреть непосредственно на выходное окно ртутной лампы , т.к. при прямом попадании света в глаза возможен ожог сетчатки глаза.

1. Ознакомиться с устройством спектроскопа.

2. Включить ртутную лампу и прогреть ее в течение 10 минут.

3. Установить выходное окно лампы против входного окна коллиматорной трубы спектроскопа.

4. Перемещением ртутной лампы добиться максимальной яркости спектральных линий, наблюдаемых в окуляр зрительной трубы.

5. Вращением микрометрического винта совместить визир окуляра с предварительно сфокусированной желтой линией ртути. Записать показания шкалы микровинта.

6. Провести измерения для других линий ртути и заполнить таблицу 1. Выключить ртутную лампу.

7. По данным таблицы 1 построить градуировочный график - зависимость длины волны спектральных линий ртути от показаний шкалы микрометрического винта.

8. Включить водородную лампу и разместить ее у входного окна спектроскопа.

9. Определить положение спектральных линий серии Бальмера атома водорода. Внести показания шкалы микрометрического винта в таблицу 2. Выключить водородную лампу.

10. С помощью градуировочного графика найти длины волн линий H a , H b и H g атома водорода. Заполнить таблицу 2.

11. По формуле (7) найти величину постоянной Ридберга для каждой измеренной длины волны.

12. По формулам (8) и (9) соответственно вычислить среднее значение постоянной Ридберга и случайную погрешность .

14. Найти относительную погрешность определения первого боровского радиуса .

15. Сделать вывод и оформить отчет.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Что такое свет? Какими свойствами он обладает? В каких опытах эти свойства

наблюдаются?

2. Какие области спектра электромагнитных волн включены в понятие оптического излучения? Укажите их диапазоны.

3. Как устроен атом?

4. Сформулируйте постулаты Бора.

5. Чему равна частота испущенного или поглощенного светового кванта?

6. Как найти длину волны света?

7. Запишите формулу Бальмера. Поясните все входящие в нее величины.

8. Что такое первый боровский радиус? Как оценить линейные размеры атома?

1. Савельев И.В. Курс общей физики. Квантовая оптика. Атомная физика./ М.: Наука, 1998. - 480 с. (§ 3.1 - § 3.6 стр.51-68)


Похожая информация.